Kinetic Characterization of Single Strand Break Ligation in Duplex DNA by T4 DNA Ligase

نویسندگان

  • Gregory J. S. Lohman
  • Lixin Chen
  • Thomas C. Evans
چکیده

T4 DNA ligase catalyzes phosphodiester bond formation between juxtaposed 5'-phosphate and 3'-hydroxyl termini in duplex DNA in three steps: 1) enzyme-adenylylate formation by reaction with ATP; 2) adenylyl transfer to a 5'-phosphorylated polynucleotide to generate adenylylated DNA; and 3) phosphodiester bond formation with release of AMP. This investigation used synthetic, nicked DNA substrates possessing either a 5'-phosphate or a 5'-adenylyl phosphate. Steady state experiments with a nicked substrate containing juxtaposed dC and 5'-phosphorylated dT deoxynucleotides (substrate 1) yielded kcat and kcat/Km values of 0.4±0.1 s(-1) and 150±50 μm(-1) s(-1), respectively. Under identical reaction conditions, turnover of an adenylylated version of this substrate (substrate 1A) yielded kcat and kcat/Km values of 0.64±0.08 s(-1) and 240±40 μm(-1) s(-1). Single turnover experiments utilizing substrate 1 gave fits for the forward rates of Step 2 (k2) and Step 3 (k3) of 5.3 and 38 s(-1), respectively, with the slowest step ∼10-fold faster than the rate of turnover seen under steady state conditions. Single turnover experiments with substrate 1A produced a Step 3 forward rate constant of 4.3 s(-1), also faster than the turnover rate of 1A. Enzyme self-adenylylation was confirmed to also occur on a fast time scale (∼6 s(-1)), indicating that the rate-limiting step for T4 DNA ligase nick sealing is not a chemical step but rather is most likely product release. Pre-steady state reactions displayed a clear burst phase, consistent with this conclusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template-independent ligation of single-stranded DNA by T4 DNA ligase.

T4 DNA ligase is one of the workhorses of molecular biology and used in various biotechnological applications. Here we report that this ligase, unlike Escherichia coli DNA ligase, Taq DNA ligase and Ampligase, is able to join the ends of single-stranded DNA in the absence of any duplex DNA structure at the ligation site. Such nontemplated ligation of DNA oligomers catalyzed by T4 DNA ligase occ...

متن کامل

Sealing of gaps in duplex DNA by T4 DNA ligase.

Single-strand gaps in DNA molecules were found to be a substrate for T4 DNA ligase. Sealing of the gaps was optimal at the same conditions as ligation of blunt-ended DNA molecules. Spermidine at a concentration of 2 mM stimulated the ligation of gaps, as well as the joining of DNA molecules with cohesive and blunt ends. In addition, spermidine reduced the optimal ATP concentration. The ligation...

متن کامل

The study of dose gamma rays of 192Ir source on DNA single strand break (SSB) and DNA double strand break (DSB) in soft tissue phantom

Introduction: Passage of ionizing radiation through the organs of living creatures develops clusters of damaged nucleotides inside the DNA rounds. 192Ir Gamma source is one of the most widely used sources in brachytherapy of cervical and prostate cancer. Thus, in this research, we investigated the flux of photons and its resulting secondary electrons, the single-strand break (S...

متن کامل

APE1-dependent repair of DNA single-strand breaks containing 3′-end 8-oxoguanine

DNA single-strand breaks containing 3'-8-oxoguanine (3'-8-oxoG) ends can arise as a consequence of ionizing radiation and as a result of DNA polymerase infidelity by misincorporation of 8-oxodGMP. In this study we examined the mechanism of repair of 3'-8-oxoG within a single-strand break using purified base excision repair enzymes and human whole cell extracts. We find that 3'-8-oxoG inhibits l...

متن کامل

Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 286  شماره 

صفحات  -

تاریخ انتشار 2011